Möbius 变换的分类与上半双曲空间的等距

2021/06/27 更新:我更新了一下 shader 代码,把每个动画放在一个 SVG 图片中。最后几个动画代码是可以使用键盘选择场景的,具体操作如下:

  • 按下 1 开启/关闭 Möbius 变换。
  • 按下 2 开启/关闭椭圆旋转。
  • 按下 3 开启/关闭双曲缩放。
  • 按下 4 开启/关闭展示 Riemann 球面。

这几个按键可以组合出许多不同的效果来!


本文的想法源自 Roice Nelson 的 shadertoy 项目,我觉得他的创意很棒,就是效果有点糙,于是 动手改进了一番。不懂的人看这个动画可能只是觉得好玩,其实它背后的数学并不简单。

这篇文章将用动画的形式从三个角度演示 Möbius 变换,这三个角度是密切相关的:

  1. Möbius 变换作为扩充复平面 \(\hat{\mathbb{C}}\) 到自身的全纯函数。
  2. Möbius 变换作为 Riemann 球面 \(S^2\) 到自身的全纯函数。
  3. Möbius 变换作为上半双曲空间中的等距变换。

本文只做演示,并不介绍详细的数学证明。读者可以参考下面的资料:

  1. 维基百科页面.
  2. Visual complex analysis, Tristan Needham.
  3. Indra's pearls, chapter 3.
  4. An introduction to complex function theory. Bruce P. Palka. Undergraduate texts in mathematics. chapter IX, section 2.

本文的动画应该可以帮助你更好地理解这些资料中的内容。

递降平面分拆的 Andrews 猜想

前言

你可能经常听到这样一句话:“做数学要大胆假设,小心求证”。我们今天要介绍的故事主角平面分拆中的 Andrews 猜想就完美地符合这一点。两个看似风马牛不相及的计数对象,因为有着相同的计数序列,冥冥中被联系在了一起,启发三位数学家 Mill, Robins 和 Rumsey 解决了一个困难的组合学猜想。整个过程并无高深的内容,但是其中的“信仰一跃”和“灵魂一猜”构成了故事的高潮,而那些繁琐的计算过程不过是小心求证的注脚而已。

本文来自我几年前读 David Bressoud 的

Proofs and Confirmations: The Story of the Alternating Sign Matrix Conjecture

一书时的读书笔记,但是叙述与 Bressoud 的书不同:Bressoud 是把 DPP 的 Andrews 猜想和 CSPP 的 Macdonald 猜想统一用 \(q-\) 超几何级数一起解决的,因此理论较为复杂。由于 Macdonald 猜想的证明似乎无法避免使用超几何级数的理论,而本人水平不足,没有看懂这一部分,所以这里只介绍 DPP 的 Andrews 猜想,并仅使用初等的 \(q-\) 二项式定理作为工具,所以计算步骤会显得有些繁琐。

 | 

当前网速较慢或者你使用的浏览器不支持博客特定功能,请尝试刷新或换用Chrome、Firefox等现代浏览器