洛奇绵羊问题

我们的问题源自中世纪威尔士人的故事集《Mabinogion》中的一段:

一个男孩来到了一个美丽的山谷,有一条小河在谷中流淌。他看到河一边的草地上有一群黑绵羊,另一边的草地上有一群白绵羊。羊群被施以一种魔法:每个时刻都恰有一只绵羊发出咩咩的叫声。如果发出叫声的是白绵羊,就会有一只黑绵羊趟过小河跑过来并且变成白绵羊;如果发出叫声的是黑绵羊,则会有一只白绵羊趟过小河跑过去并且变成黑绵羊。每个时刻发出叫声的绵羊是完全随机的,整个过程没有绵羊出生或者死亡,一直持续到所有绵羊都变成同一种颜色为止。

问题是这样的:

问题:如果男孩可以选择在初始时刻 \(0\),或者是每个魔法时刻 \(1,2,\ldots\) 结束后将任意数量的白绵羊赶出山谷,那么为了最终得到尽可能多的黑绵羊,他应该采取怎样的策略?

飞船空间跳跃问题

本文的问题出自 Williams 的教材 Probability with Martingales,虽然不算很难但是综合使用了许多知识,展示了抽象的鞅理论其实有着丰富多彩的应用。

问题:一艘太空船正在宇宙中做星际航行时,飞船的控制系统出了故障,飞船不能正常地进行空间跳跃,而是只能预先设定一个距离,然后以此距离进行一次方向完全随机的跳跃。现在飞船想要返回太阳系。假设太阳系的半径是 \(r\),发生故障时飞船与太阳的距离为 \(R>r\)。好消息是在每个时刻,飞船能够知道自身与太阳系的距离。

求证:不论采用怎样的跳跃策略,飞船返回太阳系的概率都小于 \(r/R\);但是对任何 \(\epsilon>0\),可以采取适当的策略,使得飞船返回太阳系的概率大于 \((r-\epsilon)/R\),即 \(r/R\) 是最优概率。这个最优策略是什么?

中心单代数的三个基本结论

本文来自我在讨论班上的一个两小时左右的报告,目的是介绍中心单代数的三个基本结论:

  1. 中心单代数对张量积运算是封闭的。
  2. Noether-Skolem 定理。
  3. 双重中心化子定理。

这部分内容比较古老,在很多教材上都有,但是采用的途径却很不一样,找一个完全符合自己口味的讲述不是件容易的事情。Jacobson 的书我念的就很抓狂。后来查阅了不少教材后经过提炼整理得到了本文,希望我的表述做到了清楚易懂。

Jordan 标准形

Jordan 标准形定理是线性代数中的基本定理,专门为它写一篇长文好像有点多余:这方面的教材讲义实在是太多了!一个陈旧的定理还能写出什么新意来呢?

理由有两个。第一个原因是我曾经在做助教给学生讲这个定理的时候,突然发现不知道该怎么启发他们为好。虽然我知道 Jordan 标准形定理的很多种证法,照念几个不在话下,但是感觉有点疙疙瘩瘩的:怎么才能说清定理背后的想法,让学生觉得定理的成立是顺理成章的呢?于是我知道我对这个定理的理解还有模糊的地方。

第二个原因是 Jordan 块有一个重要的代数性质是通常教材中不讲的,而这个性质是代数学中一类重要而常见的性质的雏形,这就是不可分解性。与之对应的是可对角化的线性变换的完全可约性。从一开始就让学生接触这些现象是有好处的。

矩阵空间的子空间

在数学里面经常可以提出这样一些问题:它们叙述起来很简单,答案看起来也很显然,但是要仔细证明却非常困难。即使是线性代数这样的“入门课”中也不缺少这样的问题:

问题:设域 \(\mathbb{F}\) 上的所有 \(n\) 阶矩阵构成的向量空间为 \({\rm Mat}_n(\mathbb{F})\)\(M\)\({\rm Mat}_n(\mathbb{F})\) 的一个子空间。

  1. 如果 \(M\) 中的所有矩阵关于矩阵乘法两两可以交换,那么 \(M\) 的维数最大是多少?
  2. 如果 \(M\) 中的所有矩阵的秩都不超过 \(r\),这里 \(0<r<n\),那么 \(M\) 的维数最大是多少?
  3. 如果 \(M\) 中所有矩阵都是幂零的,即对任何 \(A\in M\),存在一个正整数 \(m\) 使得 \(A^m=0\),那么 \(M\) 的维数最大是多少?
  4. 如果 \(M\) 中所有非零矩阵都是可逆矩阵,那么 \(M\) 的维数最大是多少?
 | 

当前网速较慢或者你使用的浏览器不支持博客特定功能,请尝试刷新或换用Chrome、Firefox等现代浏览器